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INTRODUCTION

Ferromagnetic amorphous alloys, or glassy metals, have
been under development as engineering materials for about
ten years. They are now used commercially in various high-
permeability applications such as recording heads and phono-
graph pickups. Large-scale application in power trans-
formers, power switching devices, and similar equipment
appears to be imminent.

In all these applications, heat treatment or annealing
of the as-quenched alloys is normal practice. The properties
of amorphous alloys, like those of crystalline alloys, are
altered by annealing; this is true even when the annealing
treatment is too short or at too low a temperature to cause
crystallization. As might be expected, the structure-sensi-
tive properties such as coercivity and permeability are
strongly affected by annealling; sometimes they are greatly
improved, but sometimes they are degraded. It is therefore
important to understand the mechanisms of annealing so that
heat treatments can be specified to give optimum properties
with high reliability and reproducibility at the lowest pos-
sible cost.

RESEARCH RESULTS FOR THIS REPORTING PERIOD

Field-Induced Anisotropy and Curie Temperature

The kinetics of the formation and reorientation of the
field-induced enisotropy K have been carefully studied in
as-received samples and samples pre-annealed in various 1
ways. We have established clearly that the kinetics can be
described by a distribution of activation energies that
depend weakly on the pre-annealing treatment. Changes in
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Curie temperature caused by annealing show similar kinetics,
and in one particular alloy (Fe40 Ni4 oPI B6) we have deter-
mined that the kinetics of these two p inmena are identi-
cal. This implies that they result from the same microscopic
mechanism. We have also made careful measurements of inter-
nal friction in amorphous alloys, and in another composition
(Fe?Ni 6Cr,4 P 12B6 ), we have established that the change in
Cur t mpet ature is proportional to the change in internal
friction 1/Q, as measured by the torsion pendulum method.
Thus we conclude that changes in both K and T are caused
by atomic level local shear transformatons that change the
local compositional short range order. The internal friction
has been studied in considerable depth, and we now under-
stand its behavior quite well even at a microscopic level.

Magnetic permeability after-effect

A time-decay of ac permeability after demagnetization,
even at room temperature, is observed in some crystalline
alloys. It is sometimes known as disaccomodation (DA), and
is known to occur also in amorphous alloys. We have estab-
lished that DA in zero-magnetostriction amorphous alloys is
caused by induced anisotropy in the domain walls, and have
found that cooling an amorphous alloy through the Curie tem-
perature in a field applied perpendicular to the ribbon axis
reduces the DA and at the same time increases the permea-
bility. The field annealing induces a weak anisotropy per-
pendicular to the ribbon axis, causing magnetization to
occur by spin rotation rather than domain wall motion.

In magnetostrictive alloys, we have confirmed the
theory of Allia and Vinai (P. Allis and F. Vinai, Phys. Rev.
B26 (1982) 6141) that DA is due to internal friction coupled
to domain wall motion via the magnetostriction.

Flash annealing

A new technique of heat treatment of amorphous alloys,
called flash annealing, has been developed and investigated.
The sample ribbon is immersed in liquid nitrogen, and a dc
pulse current up to several amperes is passed through the
ribbon for a controlled time period of 80 msec to 1 sec. The
sample temperature can be indirectly monitored by observing
the change of magnetization when the sample passes through
the Curie temperature. Because of the high heating and cool-
ing rates, it is possible to heat samples to 1200 1 without
causing crystallization. Even when crystallization does
occur, the sample surface remains shiny (unoxidized), and
the sample remains ductile, presumably because the crystal-
line grain size is very small. This technique permits
annealing treatments which have not previously been possi-
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ble. One effect that we have observed is that flash anneal-
ing "rejuvenates" a sample previously relaxed by annealing
treatments below Tc; that is, the slow annealing kinetics
become fast again, as in an as-quenched sample. We are con-
tinuing to investigate this annealing technique.

Theory of magnetostriction

Magnetostriction is clearly an important phenomenon
controlling the low-field properties of amorphous alloys.
However, the origin of magnetostriction in amorphous alloys
is not well understood at the microscopic level. We have
developed a microscopic theory of magnetostriction within
the screened point charge model. We find that if the point
charges are not screened, the linear magnetostriction is
always zero, and that the screening condition determines the
sign of the magnetostriction. We have also made an atomistic
computer simulation of magnetostriction during deformation.

PUBLICATIONS

Details of the results summarized above are contained
in the publications that have appeared in the technical lit-
erature. A list of these publications is given at the end of
this report. The identification numbers are the same as
those used in our previous reports. Papers with numbers 10
and above were prepared during this reporting period.
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